High-Speed Planar GaAs Nanowire Arrays with fmax > 75 GHz by Wafer-Scale Bottom-up Growth.
نویسندگان
چکیده
Wafer-scale defect-free planar III-V nanowire (NW) arrays with ∼100% yield and precisely defined positions are realized via a patterned vapor-liquid-solid (VLS) growth method. Long and uniform planar GaAs NWs were assembled in perfectly parallel arrays to form double-channel T-gated NW array-based high electron mobility transistors (HEMTs) with DC and RF performance surpassing those for all field-effect transistors (FETs) with VLS NWs, carbon nanotubes (CNTs), or graphene channels in-plane with the substrate. For a planar GaAs NW array-based HEMT with 150 nm gate length and 2 V drain bias, the on/off ratio (ION/IOFF), cutoff frequency (fT), and maximum oscillation frequency (fmax) are 10(4), 33, and 75 GHz, respectively. By characterizing more than 100 devices on a 1.5 × 1.5 cm(2) chip, we prove chip-level electrical uniformity of the planar NW array-based HEMTs and verify the feasibility of using this bottom-up planar NW technology for post-Si large-scale nanoelectronics.
منابع مشابه
To the memory of my beloved father
This work has as main objective the integration of planar Gunn diodes and high electron mobility transistors (HEMTs) on the same chip for the realisation of high-power oscillators in the millimeter-wave regime. By integrating the two devices, we can reinforce the high frequency oscillations generated by the diode using a transistor-based amplifier. The integration of the planar Gunn diode and t...
متن کاملMonolithic barrier-all-around high electron mobility transistor with planar GaAs nanowire channel.
High-quality growth of planar GaAs nanowires (NWs) with widths as small as 35 nm is realized by comprehensively mapping the parameter space of group III flow, V/III ratio, and temperature as the size of the NWs scales down. Using a growth mode modulation scheme for the NW and thin film barrier layers, monolithically integrated AlGaAs barrier-all-around planar GaAs NW high electron mobility tran...
متن کاملIntegration Techniques of pHEMTs and Planar Gunn Diodes on GaAs Substrates
This work presents two different approaches for the implementation of pseudomorphic high electron mobility transistors (pHEMTs) and planar Gunn diodes on the same gallium arsenide substrate. In the first approach, a combined wafer is used where a buffer layer separates the active layers of the two devices. A second approach was also examined using a single wafer where the AlGaAs/InGaAs/GaAs het...
متن کاملTandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition.
Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with...
متن کاملHigh-speed 1.55 mm operation of low-temperature-grown GaAs-based resonant-cavity-enhanced p – i – n photodiodes
We report the design, growth, fabrication, and characterization of GaAs-based high-speed p – i – n photodiodes operating at 1.55 mm. A low-temperature-grown GaAs ~LT-GaAs! layer was used as the absorption layer and the photoresponse was selectively enhanced at 1.55 mm using a resonant-cavity-detector structure. The bottom mirror of the resonant cavity was formed by a highly reflecting 15-pair G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 15 5 شماره
صفحات -
تاریخ انتشار 2015